Physical Chemistry Seminar: The Stark effect in quantum dots: from spectral diffusion to coherent control

Dr. Ron Tenne, Department of Physics, University of Konstanz, Germany

18 January 2024, 15:00 
Shenkar Building, Holcblat Hall 007 
Chemical Physics Seminar

 

Abstract:

While colloidal quantum dots (CQDs) have become an important building block in electro-optical devices, in the realm of quantum science and technology, they are rarely considered. Despite their single-photon emission [1], demonstrations of quantum coherence and control are largely still lacking. The main obstacle towards these is spectral diffusion – stochastic fluctuations in the energy of photons emitted from an individual CQD even at cryogenic temperatures. In this talk, I will present our recent work providing, for the first time, direct and definitive proof that these fluctuations arise from stochastic electric fields in the emitter’s nano environment [2]. However, the high sensitivity of CQDs to electric fields, through the quantum-confined Stark effect, can also be perceived as a feature, rather than a bug. I will present future concepts for broadband coherent control of the temporal wavefunction of a single photon through electric fields. Relying on tools from the terahertz and femtosecond-laser toolboxes [3,4], spectroscopy and control at fast-to-ultrafast (millisecond-to-femtosecond) timescales, will play a detrimental role in fulfilling the unique potential that CQDs hold in the field of quantum optics,.

 

[1]    R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, Super-Resolution Enhancement by Quantum Image Scanning Microscopy, Nature Photonics 13, 116 (2019).

[2]    F. Conradt, V. Bezold, V. Wiechert, S. Huber, S. Mecking, A. Leitenstorfer, and R. Tenne, Electric-Field Fluctuations as the Cause of Spectral Instabilities in Colloidal Quantum Dots, Nano Lett. 23, 9753 (2023).

[3]    P. Henzler et al., Femtosecond Transfer and Manipulation of Persistent Hot-Trion Coherence in a Single CdSe/ZnSe Quantum Dot, Physical Review Letters 126, 067402 (2021).

[4]    P. Fischer, G. Fitzky, D. Bossini, A. Leitenstorfer, and R. Tenne, Quantitative Analysis of Free-Electron Dynamics in InSb by Terahertz Shockwave Spectroscopy, Physical Review B 106, 205201 (2022).
 

 

Seminar Organizer: Dr. Guy Cohen

 

 

 

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing, Contact us as soon as possible >>