Organic Chemistry Seminar: Multiscale Modeling of Self-Assembled Bioinspired Materials

Dr. Giovanni Pavan, University of Applied Science of Southern Switzerland

20 November 2016, 16:00 
Shenkar Building, Holcblat Hall 007 
Organic Chemistry Seminar

Abstract:

Self-assembled materials, composed of individual monomers that spontaneously connect via non-covalent interactions, have recently emerged as versatile alternatives to covalent materials thanks to their unique bioinspired properties (self-healing, responsiveness, dynamics, etc.). Synthetic water-soluble assemblies are particularly interesting for various nano-bio applications. A few relevant examples include polymeric micelles, synthetic supramolecular polymers, vesicles, tubes, bilayers, etc.1 However, due to the extreme complexity of these systems, the design principles to obtain supramolecular materials with controlled properties in bio-relevant environments are still mostly empirical.

 

Recently, we have employed multiscale molecular modeling to study various types of supramolecular materials. Used in synergy with the experiments, in silico simulations have been proven extremely useful to study self-assembly, and to understand the properties of complex nanostructures,2 dynamic supramolecular polymers3 and stimuli-responsive supramolecular assemblies.4 In this presentation, a few examples will be discussed where molecular simulations allowed to look into self-assembled systems from a privileged point of view: a virtual microscope with atomic resolution supporting characterization, understanding, and, overall, rational design.

 

References:

  1. Aida, T.; Meijer, E. W.; Stupp, A. I. Science, 2012, 335, 813-817

  2. (a) Pepmayer, M.; Vuilleumier, C. A.; Pavan, G. M.; Zhurov, K. O.; Severin, K. Angew. Chem. Int. Ed. 2016, 55, 1685-1689; (b) Beltran, E.; Garzoni, M.; Fernigan, B.; Vancheri, A.; Barbera, J.; Serrano, J. L.; Pavan, G. M.; Gimenez, R.; Sierra, T. Chem Commun. 2015, 51, 1811-1814; (c) Doni, G.; Nkoua Ngavouka, M. D. ; Barducci, A.; Parisse, P.; DeVita, A.; Scoles, G.; Casalis, L.; Pavan, G. M. Nanoscale 2013, 5, 9988-9993

  3. (a) Garzoni, M.; Baker, M. B.; Leenders, C. M. A.; Voets, I. K.; Albertazzi, L.; Palmans, A. R. A.; Meijer E. W.; Pavan, G.M. J. Am. Chem. Soc. 2016, 138, 13985-13995; (b) Baker, M. B.; Albertazzi, L.; Leenders, C. M. A.; Voets, I. K.;Palmans, A. R. A.; Pavan, G. M.; Meijer E. W. Nature Commun. 2015, 6, 6234; (c) Garzoni, M.; Cheval, N.; Fahmi, A.;Danani, A.; Pavan, G. M. J. Am. Chem. Soc. 2012, 134, 3349-3357

  4. (a) Torres, D. A.; Garzoni, M.; Subrahmanyam, A. V.; Pavan, G. M.; Thayumanavan, S. J. Am. Chem. Soc. 2014, 136, 5385-5399; (b) Munkhabat, O.; Garzoni, M.; Raghupathi, K. R.; Pavan, G. M.; Thayumanavan, S. Langmuir 2016, 32, 2874-2881; (c) Molla, M. R.; Rangadurai, P.; Pavan, G. M.; Thayumanavan, S. Nanoscale 2015, 7, 3817-3837

 

 

Seminar Organizer: Dr. Roman Dobrovetsky

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing Contact us as soon as possible >>